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A RATIONAL HOMOLOGY DISK SMOOTHING OF

Wp,q,r

Heesang Park and Dongsoo Shin

Abstract. We prove that a rational homology disk smoothing of
the singularityWp,q,r isQ-Gorenstein by using its sandwiched struc-
ture.

1. Introduction

The concept of Q-Gorensteiness plays a crucial role in the study of
the Kollár–Shepherd-Barron–Alexeev compactifications of the moduli
spaces of complex surfaces of general type. We say that a smoothing
Z → ∆ of a normal surface singularity Z is Q-Gorenstein if some mul-
tiple of the canonical class of Z is Cartier. Originally, Wahl [6] and
Kollár–Shepherd-Barron [3] classified quotient surface singularities that
allow Q-Gorenstein smoothings. These are cyclic quotient surface sin-
gularities of the form 1

dn2 (1, dna− 1), where integers d ≥ 1, n > a ≥ 1,
and (n, a) = 1. Such singularities are referred to as singularities of class
T. More recently, Bhupal–Stipsicz [1] classified the resolution graphs of
weighted homogeneous surface singularities that admit smoothings with
the rational homology of the 4-disk.

One of the earliest examples that can be smoothed with rational
homology disks is the singularity Wp,q,r, initially discovered by Wahl [6].
Here, Wp,q,r is a singularity classified by Bhupal–Stipsicz [1], and its
dual graph is illustrated in Figure 1.

In this paper, we prove that a rational homology disk smoothing
of Wp,q,r is indeed Q-Gorenstein. It’s worth noting that Wahl [7] had
already established the Q-Gorenstein property of rational homology disk
smoothings of all the singularities given in Bhupal–Stipsicz [1]. However,
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in this paper, we present a different, simpler method to prove its Q-
Gorensteiness.
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Figure 1. W (p, q, r), where p, q, r ≥ 0

Theorem 1.1. The smoothing of Wp,q,r whose Milnor fiber is a ra-
tional homology disk is Q-Gorenstein.

We briefly sketch the idea of the proof. We first show that Wp,q,r is a
sandwiched surface singularity; See Section 2 for details. Then one can
apply the Q-Gorensteinness criterion given by de Jong–van Straten [2].
In details, for each smoothing of a sandwiched surface singularity, there
is a certain matrix, called an incidence matrix, that corresponds to the
given smoothing. de Jong–van Straten [2] showed that a smoothing of a
sandwiched surface singularity isQ-Gorenstein if and only if its incidence
matrix satisfies a certain simple condition; Proposition 3.1. So we first
find the incidence matrix corresponding to the rational homology disk
smoothing of Wp,q,r and we then show that the incidence matrix satisfies
the criterion.
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2. Sandwiched surface singularities

A sandwiched surface singularity (X, 0) is a normal surface singularity
admitting a birational morphism to ρ : (X, 0) → (C2, 0). Sandwiched
surface singularities are rational singularities characterized by their dual
resolution graphs, so-called sandwiched graphs:
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Figure 2. A sandwiched structure for Wp,q,r

Definition 2.1 (Spivakovsky [5, Definition 1.9]). A graph Γ is called
a sandwiched graph if it is the dual resolution graph of a rational surface
singularity that can be blown down to a smooth point by adding new
vertices with weights (−1) on the proper places.

Proposition 2.2 (Spivakovsky [5, Proposition 1.11]). A normal sur-
face singularity is sandwiched if and only if its dual resolution graph is
sandwiched.

Lemma 2.3. The singularity Wp,q,r is sandwiched.

Proof. It is already proved in Park–Shin [4]. Its dual graph is sand-
wiched as given in Figure 2.

2.1. Decorated curves

In their work on sandwiched surface singularities (X, p), de Jong and
van Straten [2] introduced a pair (C, l). This pair consists of a plane
curve singularity C = ∪s

i=1Ci and an assignment function l : {Ci | i =
1, . . . , e} → N that characterizes the singularity X in terms of (C, l).
Let’s briefly revisit how one can derive (C, l) from (X, p). For a more
in-depth explanation, please refer to de Jong-van Straten [2].

Definition 2.4 (de Jong-van Straten [2, Definition 1.4]). A decorated
germ is a pair (C, l), comprising a plane curve singularity C = ∪s

i=1Ci ⊂
C2 passing through the origin and an assignment function l : {Ci | i =
1, . . . , s} → N. This assignment function must satisfy the condition
l(Ci) ≥ m(Ci), where m(Ci) denotes the sum of multiplicities of branch
Ci in the multiplicity sequence of the minimal resolution of C.
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Using a sandwiched graph structure, it is possible to construct a dec-
orated curve (C, l) for (X, p). The dual graph of the minimal resolution
(V,E) of (X, p) is, in fact, sandwiched and can be transformed into a
smooth point by introducing some (−1)-vertices. Simultaneously, one

can embed (V,E) into a blow-up space (C̃2, F ) of C2 centered at the
origin (including its infinitely near point), where F represents the set of
exceptional divisors. For each (−1)-curve Fi ∈ F , one selects a curvetta

C̃i (essentially, a small segment of a curve) that intersects Fi trans-

versely. The union of these C̃i segments, denoted as C̃, is then mapped

to C = ρ(C̃) =
⋃

Fi≤F Ci, where each Ci is the image of C̃i under the
map ρ. At this point, C can be regarded as a germ of plane curves pass-
ing through the origin 0. To decorate Ci, assign the number li, which
represents the sum of multiplicities of the blowing-up points located on
the strict transform of Ci.

A decorated curve for Wp,q,r is given in Figure 2.

Lemma 2.5. For Wp,q,r , C̃ = (∪Ãi)
⋃
(∪B̃j)

⋃
(∪C̃k) and l(Ai) =

q + 3, l(Bj) = r + 3, l(Ck) = p+ 3.

For details, refer Park–Shin [4, §15.2].

2.2. Picture deformations

A one-parameter deformation of a sandwiched surface singularity
(X, p) can be traced back to a one-parameter deformation of its dec-
orated curve (C, l). The detailed deformation theory is outlined in de
Jong-van Straten [2].

The decoration l associated with a decorated curve (C, l) can be
thought of as the combination of unique subschemes, each having length
li, supported on the preimage of the origin 0 on the normalization of Ci.

Definition 2.6 (de Jong-van Straten [2, Definition 4.2]). Suppose
(C, l) is a decorated curve associated with a sandwiched surface singu-
larity (X, p). Then, a picture deformation (C,L) of (C, l) over a small
disk ∆ centered at the origin 0 consists of the following:

(1) A δ-constant deformation C → ∆ of C, meaning that δ(Ct) is con-
stant for all t ∈ ∆, where Ct is a fiber over t.

(2) A flat deformation L ⊂ C over ∆ of the scheme l.
(3) M ⊂ L, where the relative total multiplicity scheme M of C → ∆

is defined as the closure
⋃

t∈∆\0m(Ct).

(4) For generic t ∈ T \ 0 the divisor lt on C̃t is reduced.
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Proposition 2.7 (de Jong-van Straten [2, Theorem 4.4]). For any
one-parameter smoothing of X, there corresponds to a picture deforma-
tion of its decorated curve (C, l), and vice versa.

2.3. Incidence matrices

The combinatorial aspects of picture deformations for (C, l) can be
captured using specific matrices. Let’s consider a picture deformation
(C,L) of (C, l). Assuming that C is composed of components C =
∪s
i=1Ci and that Ct = ∪s

i=1Ci,t for the deformed curve Ct, we denote by
P1, . . . , Pn the images in Ct of the points in the support of lt.

Definition 2.8 (de Jong-van Straten [2, p. 483]). The incidence ma-
trix of a picture deformation (C,L) is represented as I(C,L) ∈ Ms,n(Z),
where Ms,n(Z) is the set of s×n matrices whose entries are integers. In
this matrix, the entry at position (i, j) is equal to the multiplicity of Pj

as a point on Ci,t for t ̸= 0.

Lemma 2.9. The incidence matrices that corresponds to the rational
homology disk smoothing of Wp,q,r is given as follows:

M =



1 1 1 0 0 0

A(I)
1 1 0 1 0 0
1 0 0 0 1 1

B(I)
0 1 0 0 1 1
0 0 1 1 1 0

C(I)
0 0 1 1 0 1



q + 2︷ ︸︸ ︷ p+ 2︷ ︸︸ ︷ r + 2︷ ︸︸ ︷

In addition, if p = q = r, then we have one more incidence matrix:

M ′ =



1 1 1 0 0 0

A(I)
1 1 0 1 0 0
0 0 1 1 1 0

B(I)
0 0 1 1 0 1
1 0 0 0 1 1

C(I)
0 1 0 0 1 1


Proof. See Park–Shin [4, §16.3].
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3. Q-Gorensteinness

de Jong and van Straten [2] provided a straightforward criterion for
determining whether a one-parameter smoothing of a sandwiched surface
singularity is Q-Gorenstein.

Proposition 3.1 (de Jong and van Straten [2, Corollary 5.12]).
A one-parameter smoothing X → ∆ is Q-Gorenstein if and only if
(1, 1, . . . , 1) is a rational linear combination of the rows of the corre-
sponding incidence matrix.

Proof of Theorem 1.1. We can verify that the matrixM has full rank,
meaning that there is always a solution to the matrix equation MTY =
(1, . . . , 1)T . It’s important to note that the determinants of MT and
its submatrices are always rational numbers, implying the existence of
a rational solution Y . Consequently, we can express (1, 1, . . . , 1) as a
rational linear combination of the rows of M . Similarly, we can prove
the criterion to the matrix M ′.
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